Kelebihan Dan Kekurangan Arsitektur Von Neumann & Arsitektur Harvard


Kelebihan Dan Kekurangan Arsitektur Von Neumann & Arsitektur Harvard


Arsitektur Von Neumann

Arsitektur Von Neumann adalah arsitektur komputer yang menempatkan program (ROM= Read Only Memory) dan data (RAM = Random Access Memory) dalam peta memori yang sama. Arsitektur ini memilik address dan data bus tunggal untuk mengalamatkan program (intruksi dan data. Bagian komputer terdiri dari tiga komponen yaitu CPU (Central Processing Unit); memory dan Input/Output. Ketiga  komponen tersebut terhubung melalui sistem bus.

Kelebihan model arsitektur Von Neumann:
a. Fleksibilitas pengalamatan program dan data
b. Program selalu ada di ROM dan data selalu ada di RAM
c. Arsitektur Von Neumann memungkinka prosesor untuk menjalankan program yang ada di dalam memori data (RAM).

Kelemahan model arsitektur Von Neumann:
a. Data bus tunggal menyebabkan instriuksi untuk mengakses program dan data harus dijalankan secara sekuensial dan tidak bisa melakukan overlapping
b. Bandwitdh program harus sama dengan bandwitdh data
c. Processor Von Neumann membutuhkan jumlah clock PI (clock per Intruction) yang relatif lebih banyak.

Arsitektur Harvard:

Arsitektur Harvard memiliki dua memori yang terpisah satu untuk program (ROM) dan satu untuk data (RAM), yang mana arsitektur ini merupkan kebalikkan dari arsitektur komputer model von nuemann, jika von neuman mengabungkan ROM dan RAM menjadi satu maka arsitektur harvard maka kedua memori tersebut dipisahkan.

Kelebihan model arsitektur Hardvard:
a. Bandwith program tidak harus sama dengan bandwitdh data
b. Instruksi dapat dilakukan lebih singkat dan cepat
c. Memori program dan data terpisah
d. Opcode dan Operand dapat dijadikan dalam satu word intruksi saja

Kelemahan model arsitektur Hardvard:
a. Tidak memungkinkan untuk menempatkan data pada ROM
b. Tidak memungkinkan untuk mengakses data yang ada pada RAM


Pengertian Bus Dan Jenisnya


PENGERTIAN BUS DAN JENISNYA



BUS adalah Jalur komunikasi yang dibagi pemakai Suatu set kabel tunggal yang digunakan untuk menghubungkan berbagai subsistem. Karakteristik penting sebuah bus adalah bahwa bus merupakan media transmisi yang dapat digunakan bersama. Sistem komputer terdiri dari sejumlah bus yang berlainan yang menyediakan jalan antara dua buah komponen pada bermacam-macam tingkatan hirarki sistem komputer.

Suatu Komputer tersusun atas beberapa komponen penting seperti CPU, memori, perangkat Input/Output. setiap computer saling berhubungan membentuk kesatuan fungsi. Sistem bus adalah penghubung bagi keseluruhan komponen computer dalam menjalankan tugasnya. Transfer data antar komponen komputer sangatlah mendominasi kerja suatu computer. Data atau program yang tersimpan dalam memori dapat diakses dan dieksekusi CPU melalui perantara bus, begitu juga kita dapat melihat hasil eksekusi melalui monitor juga menggunakan system bus.

Pada sistem komputer yang lebih maju, arsitektur komputernya  akan  lebih kompleks, sehingga untuk meningkatkan  performa, digunakan beberapa buah bus. Tiap bus merupakan jalur data antara beberapa device yang berbeda. Dengan cara ini RAM, Prosesor, GPU (VGA AGP) dihubungkan oleh bus utama berkecepatan tinggi yang lebih dikenal dengan nama FSB (Front Side Bus) . Sementara perangkat lain yang lebih lambat dihubungkan oleh bus yang berkecepatan lebih rendah yang terhubung dengan bus lain yang lebih cepat sampai ke bus utama. Untuk komunikasi antar bus ini digunakan sebuah bridge.

Cara Kerja Bus
Pada sistem komputer yang lebih maju, arsitektur komputernya  akan  lebih kompleks, sehingga untuk meningkatkan  performa, digunakan beberapa buah bus. Tiap bus merupakan jalur data antara beberapa device yang berbeda. Dengan cara ini RAM, Prosesor, GPU (VGA AGP) dihubungkan oleh bus utama berkecepatan tinggi yang lebih dikenal dengan nama FSB (Front Side Bus) . Sementara perangkat lain yang lebih lambat dihubungkan oleh bus yang berkecepatan lebih rendah yang terhubung dengan bus lain yang lebih cepat sampai ke bus utama. Untuk komunikasi antar bus ini digunakan sebuah bridge.


Jenis - Jenis Bus
Berdasar jenis busnya, bus dapat dibedakan menjadi bus yang khusus menyalurkan data tertentu, contohnya paket data saja, atau alamat saja, jenis ini disebut Dedicated Bus . Namun apabila bus yang dilalui informasi yang berbeda baik data, alamat, dan sinyal kontrol dengan metode multipleks data maka bus ini disebut Multiplexed Bus. Kekurangan multiplexed bus adalah hanya memerlukan saluran sedikit sehingga menghemat tempat tapi kecepatan transfer data menurun dan diperlukan mekanisme yang komplek untuk mengurai data yang telah dimultipleks. Sedangkan untuk dedicated bus merupakan kebalikan dari multipexed bus.


Stuktur Bus
Sebuah bus sistem terdiri dari 50 hingga 100 saluran yang terpisah. Masing-masing saluran ditandai dengan arti dan fungsi khusus. Walaupun terdapat sejumlah rancangan bus yang berlainan, fungsi saluran bus dapat diklasifikasikan menjadi tiga kelompok, yaitu saluran data, saluran alamat, dan saluran kontrol. Selain itu, terdapat pula saluran distribusi daya yang memberikan kebutuhan daya bagi modul yang terhubung.



1. Saluran Data
Saluran data memberikan lintasan bagi perpindahan data antara dua modul sistem. Saluran ini secara kolektif disebut bus data. Umumnya bus data terdiri dari 8, 16, 32 saluran, jumlah saluran diakitakan denang lebar bus data. Karena pada suatu saat tertentu masing-masing saluran hanya dapat membawa 1 bit, maka jumlah saluran menentukan jumlah bit yang dapat dipindahkan pada suatu saat. Lebar bus data merupakan faktor penting dalam menentukan kinerja sistem secara keseluruhan. Misalnya, bila bus data lebarnya 8 bit, dan setiap instruksi panjangnya 16 bit, maka CPU harus dua kali mengakses modul memori dalam setiap siklus instruksinya.

2. Saluran Alamat
Saluran alamat digunakan untuk menandakan sumber atau tujuan data pada bus data. Misalnya, bila CPU akan membaca sebuah word data dari memori, maka CPU akan menaruh alamat word yang dimaksud pada saluran alamat. Lebar bus alamat akan menentukan kapasitas memori maksimum sistem. Selain itu, umumnya saluran alamat juga dipakai untuk mengalamati port-port input/outoput. Biasanya, bit-bit berorde lebih tinggi dipakai untuk memilih lokasi memori atau port I/O pada modul.

3. Saluran Kontrol
Saluran kontrol digunakan untuk mengntrol akses ke saluran alamat dan penggunaan data dan saluran alamat. Karena data dan saluran alamat dipakai bersama oleh seluruh komponen, maka harus ada alat untuk mengontrol penggunaannya. Sinyal-sinyal kontrol melakukan transmisi baik perintah maupun informasi pewaktuan diantara modul-modul sistem. Sinyal-sinyal pewaktuan menunjukkan validitas data dan informasi alamat. Sinyal-sinyal perintah mespesifikasikan operasi-operasi yang akan dibentuk. Umumnya saluran kontrol meliputi : memory write, memory read, I/O write, I/O read, transfer ACK, bus request, bus grant, interrupt request, interrupt ACK, clock, reset.


Contoh Bus

Banyak perusahaan yang mengembangakan bus-bus antarmuka terutama untuk perangkat peripheral. Diantara jenis bus yang beredar di pasaran saat ini adalah, PCI, ISA, USB, SCSI, FuturaBus+, FireWire, dan lain-lain. Semua memiliki keunggulan, kelemahan, harga, dan teknologi yang berbeda sehingga akan mempengaruhi jenis-jenis penggunaannya.

Bus ISA : Industri computer personal lainnya merespon perkembangan ini dengan mengadopsi standarnya sendiri, bus ISA (Industry Standar Architecture), yang pada dasarnya adalah bus PC/AT yang beroperasi pada 8,33 MHz. Keuntungannya adalah bahwa pendekatan ini tetap mempertahankan kompatibilitas dengan mesin-mesin dan kartu-kartu yang ada.

Bus PCI : Peripheral Component Interconect (PCI) adalah bus yang tidak tergantung prosesor dan berfungsi sebagai bus mezzanine atau bus peripheral. Standar PCI adalah 64 saluran data pada kecepatan 33MHz, laju transfer data 263 MB per detik atau 2,112 Gbps. Keunggulan PCI tidak hanya pada kecepatannya saja tetapi murah dengan keping yang sedikit.

Bus USB : Semua perangkat peripheral tidak efektif apabila dipasang pada bus kecepatan tinggi PCI, sedangkan banyak peralatan yang memiliki kecepatan rendah seperti keyboard, mouse, dan printer. Sebagai solusinya tujuh vendor computer (Compaq, DEC, IBM, Intel, Microsoft, NEC, dan Northen Telecom) bersama-sama meranccang bus untuk peralatan I/O berkecepatan rendah. Standar yang dihasilakan dinamakan Universal Standard Bus (USB).

Bus SCSI : Small Computer System Interface (SCSI) adalah perangkat peripheral eksternal yang dipo[ulerkan oleh macintosh pada tahun 1984. SCSI merupakan interface standar untuk drive CD-ROM, peralatan audio, hard disk, dan perangkat penyimpanan eksternal berukuan besar. SCSI menggunakan interface paralel dengan 8,16, atau 32 saluran data.

Bus P1394 / Fire Wire : Semakin pesatnya kebutuhan bus I/O berkecepatan tinggi dan semakin cepatnya prosesor saat ini yang mencapai 1 GHz, maka perlu diimbangi dengan bus berkecepatan tinggi juga. Bus SCSI dan PCI tidak dapat mencukupi kebutuhan saat ini. Sehingga dikembangkan bus performance tinggi yang dikenal dengan FireWire (P1393 standard IEEE). P1394 memiliki kelebihan dibandingkan dengan interface I/O lainnya, yaitu sangat cepat, murah, dan mudah untuk diimplementasikan. Pada kenyataan P1394 tidak hanya popular pada system computer, namun juga pada peralatan elektronik seperti pada kamera digital, VCR, dan televise. Kelebihan lain adalah penggunaan transmisi serial sehingga tidak memerlukan banyak kabel.

Apa itu Register ?

JENIS-JENIS REGISTER DAN PENGERTIANNYA

Register prosesor adalah sejumlah kecil memori yang bekerja dalam kecepatan sangat  tinggi untuk melakukan eksekusi terhadap program-program komputer dengan menyediakan akses yang cepat terhadap nilai-nilai umum yang digunakan. nilai-nilai yang umum digunakan adalah nilai yang sedang dieksekusi dalam waktu tertentu.
Register prosesor berdiri pada tingkat tertinggi dalam hierarki memori: ini berarti bahwa kecepatannya adalah yang paling cepat; kapasitasnya adalah paling kecil; dan harga tiap bitnya adalah paling tinggi. Register juga digunakan sebagai cara yang paling cepat dalam sistem komputer untuk melakukan manipulasi data. Register umumnya diukur dengan satuan bit yang dapat ditampung olehnya, seperti "register 8-bit", "register 16-bit", "register 32-bit", atau "register 64-bit" dan lain-lain.
Istilah register saat ini dapat merujuk kepada kumpulan register yang dapat diindeks secara langsung untuk melakukan input/output terhadap sebuah instruksi yang didefinisikan oleh set instruksi. untuk istilah ini, digunakanlah kata "Register Arsitektur". Sebagai contoh set instruksi Intel x86 mendefinisikan sekumpulan delapan buah register dengan ukuran 32-bit, tapi CPU yang mengimplementasikan set instruksi x86 dapat mengandung lebih dari delapan register 32-bit.

Jenis jenis register pada prosesor :
·         Register data ,  digunakan untuk menyimpan angka-angka dalam bilangan bulat (integer).
·         Register alamat, digunakan untuk menyimpan alamat-alamat memori dan juga untuk mengakses memori.
·         Register general purpose, digunakan untuk menyimpan angka dan alamat secara sekaligus.
·         Register floating-point, digunakan untuk menyimpan angka-angka bilangan floating point.
·         Register konstanta (contant register), digunakan untuk menyimpan angka-angka tetap yang hanya dapat dibaca (bersifat read only), semacam phi,null,true, false
·         Register vector, digunakan untuk menyimpan hasil pemrosesan vektor yang dilakukan oleh prosesor SIMD
·         Register special purpose ,digunakan untuk menyimpan data internal prosesor, seperti halnya instruction pointer, stack pointer, dan status register.
·         Register yang spesifik terhadap model mesin(machine-specific register), dalam beberapa arsitektur tertentu, digunakan untuk menyimpan data atau pengaturan yang berkaitan dengan prosesor itu sendiri. Karena arti dari setiap register langsung dimasukkan ke dalam desain prosesor tertentu saja, mungkin register jenis ini tidak menjadi standar antara generasi prosesor.



 Ukuran Pada Register
RegisterProsesor
4-bitIntel 4004
8-bitIntel 8080
16-bitIntel 8086Intel 8088Intel 80286
32-bitIntel 80386Intel 80486Intel Pentium ProIntel PentiumIntel Pentium 2Intel Pentium 3Intel Pentium 4Intel CeleronIntel XeonAMD K5AMD K6AMD AthlonAMD Athlon MPAMD Athlon XPAMD Athlon 4AMD DuronAMD Sempron
64-bitIntel ItaniumIntel Itanium 2Intel XeonIntel CoreIntel Core 2AMD Athlon 64AMD Athlon X2AMD Athlon FXAMD Turion 64AMD Turion X2AMD Sempron

Sistem Memory Komputer

Sistem Memory Komputer

I. PENGERTIAN
            Memori merupakan bagian dari komputer yang berfungsi sebagai tempat penyimpanan informasi yang harus diatur dan dijaga sebaik-baiknya. Memori biasanya disebut juga dengan istilah : computer storage, computer memory atau memory, merupakan piranti komputer yang digunakan sebagai media penyimpan data dan informasi saat menggunakan komputer. Memory merupakan bagian yang penting dalam komputer modern dan letaknya di dalam CPU (Central Processing Unit).
Sebagian besar komputer memiliki hirarki memori yang terdiri atas tiga level, yaitu:
·       Physical Register di CPU, berada di level teratas. Informasi yang berada di register dapat diakses dalam satu clock cycle CPU.
·       Primary Memory (executable memory), berada di level tengah. Contohnya, RAM. Primary Memory diukur dengan satu byte dalam satu waktu, secara relatif dapat diakses dengan cepat, dan bersifat volatile (informasi bisa hilang ketika komputer dimatikan). CPU mengakses memori ini dengan instruksi single load dan store dalam beberapa clock cycle.
·       Secondary Memory, berada di level bawah. Contohnya, disk atau tape. Secondary Memory diukur sebagai kumpulan dari bytes (block of bytes), waktu aksesnya lambat, dan bersifat non-volatile (informasi tetap tersimpan ketika komputer dimatikan). Memori ini diterapkan di storage device, jadi akses meliputi aksi oleh driver dan device.

II. Penggunaan Memory
            Komponen utama dalam sistem komputer adalah Arithmetic Logic Unit (ALU), Control Circuitry, Storage Space dan piranti Input/Output. Jika tanpa memory, maka komputer hanya berfungsi sebagai digital signal processing devices, contohnya kalkulator atau media player. Kemampuan memory untuk menyimpan data, instruksi dan informasi-lah yang membuat komputer dapat disebut sebagai general-purpose komputer.Komputer merupakan piranti digital, maka informasi disajikan dengan sistem bilangan binary. Teks, angka, gambar, sudio dan video dikonversikan menjadi sekumpulan bilangan binary (binary digit atau disingkat bit). Sekumpulan bilangan binary dikenal dengan istilah BYTE, dimana 1 byte = 8 bits. Semakin besar ukuran memory-nya maka semakin banyak pula informasi yang dapat disimpan di dalam komputer (storage devices).Berikut ini beberapa gambar yang bisa mewakili bagaimana cara informasi disimpan dalam memory dan bagaimana data ditransfer dari satu bagian ke bagian lainnya.
  

Memori (atau lebih tepat disebut memori fisik pada komputer)merupakan istilah generik yang merujuk pada media penyimpanan data sementara pada komputer. Setiap program dan data yang sedang diproses oleh prosesor akan disimpan di dalam memori fisik.
Data yang disimpan dalam memori fisik bersifat sementara, karena data yang disimpan di dalamnya akan tersimpan selama komputer tersebut masih dialiri daya (dengan kata lain, komputer itu masih hidup). Ketika komputer itu direset atau dimatikan, data yang disimpan dalam memori fisik akan hilang. Oleh karena itulah, sebelum mematikan komputer, semua data yang belum disimpan ke dalam media penyimpanan permanen (umumnya berbasis disk, semacamhard disk atau floppy disk), sehingga data tersebut dapat dibuka kembali di lain kesempatan. Memori fisik umumnya diimplementasikan dalam bentuk Random Access Memory (RAM), yang bersifat dinamis (DRAM).


III. JENIS MEMORI (MEDIA PENYIMPANAN)

A.   MEMORI INTERNAL

Memori jenis ini dapat diakses secara langsung oleh prosesor. Memori internal memiliki fungsi sebagai pengingat. Dalam hal ini yang disimpan di dalam memori utama dapat berupa data atau program.

1. ROM
       ROM (Read-Only-Memory a.k.a firmware) adalah jenis memori yang isinya tidak hilang ketika tidak mendapat aliran listrik dan pada awalnya isinya hanya bisa dibaca. ROM pada komputer disediakan oleh vendor komputer dan berisi program atau data. Di dalam PC, ROM biasa disebut BIOS (Basic Input/Output System) atau ROM-BIOS. Instruksi dalam BIOS inilah yang akan dijalankan oleh mikroprosesor ketka komputer mulai dihidupkan.
 2. RAM
        RAM (Random-Access Memory) adalah jenis memori yang isinya dapat diganti-ganti selama komputer sihidupkan dan bersifat volatile. Selain itu, RAM mempunyai sifat yakni dapat menyimpan dan mengambil data dengan sangat cepat. Tipe RAM pada PC bermacam; antara lain DRAM, SDRAM, SRAM, RDRAM, dan EDO RAM.
3. CACHE MEMORY
        Memori berkapasitas terbatas, memori ini berkecepatan tinggi dan lebih mahal dibandingkan memory utama. Berada diantara memori utama dan register pemroses, berfungsi agar pemroses tidak langsung mengacu kepada memori utama tetapi di cache memory yang kecepatan aksesnya yang lebih tinggi, metode menggunakan cache memory ini akan meningkatkan kinerja sistem. Cache memory adalah tipe RAM tercepat yang ada, dan digunakan oleh CPU, hard drive, dan beberapa komponen lainnya.

B.   MEMORI EKSTERNAL
Merupakan memori tambahan yang berfungsi untuk menyimpan data atau program.Contoh: Hardisk, Floppy Disk dllHubungan antara Chace Memori, Memori Utama dan Memori eksternal

1.    Berdasarkan Jenis Akses Data
Berdasarkan jenis aksesnya memori eksternal dikelompokkan menjadi dua jenis yaitu :
     a. DASD (Direct Access Storage Device) di mana ia mempunyai akses langsung terhadap data.
Contoh :
·          Magnetik (floppy disk, hard disk).
·         Removeable hard disk (Zip disk, Flash disk).
·              Optical Disk.
      b. SASD (Sequential Access Storage Device) : Akses data secara tidak langsung (berurutan), seperti pita magnetik.



2.    CACHE MEMORY
Berdasarkan karakteristik bahan pembuatannya, memori eksternal digolongkan menjadi beberapa kelompok sebagai berikut:
a. Punched Card atau kartu berlubang
Merupakan kartu kecil berisi lubang-lubang yang menggambarkan berbagai instruksi atau data. Kartu ini dibaca melalui puch card reader yang sudah tidak digunakan lagi sejak tahun 1979.
b. Magnetic Disk
Magnetic Disk merupakan disk yang terbuat dari bahan yang bersifat magnetik, Contoh : floppy dan harddisk.
c. Optical Disk
Optical disk terbuat dari bahan-bahan optik, seperti dari resin (polycarbonate) dan dilapisi permukaan yang sangat reflektif seperti alumunium. Contoh : CD dan DVD
d. Magnetic Tape
Sedangkan magnetik tape, terbuat dari bahan yang bersifat magnetik tetapi berbentuk pita, seperti halnya pita kaset tape recorder.

Pengertian CPU

Pengertian CPU dapat dilihat dari kepanjangan CPU itu sendiri. CPU merupakan kepanjangan dari Central Processing Unit atau dalam bahasa Indonesia diartikan Unit Pengolah Pusat. Sehingga pengertian CPU juga bisa bergeser menjadi otak dari komputer. Karena CPU merupakan pusat pengolahan data dalam sebuah komputer. Satuan kecepatan dari processor adalah MHz, dan semakin besar nilai kecepatan dari processor maka kerja komputer juga semakin cepat. Secara konseptual processor memiliki 3 komponen utama yaitu ALU, CU dan MU.



1.ALU (Aritmatic Logical Unit) adalah bagian dari CPU yang bertugas untuk melakukan perhitungan aritmatika yang harus dijalankan sesuai dengan intruksi program. selain itu ALU juga berfungsi untuk menyelesaikan program dengan operasi logika sehingga semua perhitungan dari matematika pada komputer dilakukan pada bagian ini.

2. CU (Control Unit) adalah bagian yang bertugas untuk mengatur lalu lintas data seperti mengambil intruksi memori utama, mengatur dan mengendalikan peralatan input dan output, mengirim perintah ke ALU, menyimpan hasil proses dan lain-lain.

3. MU (Memori Unit) adalah bagian yang berfungsi untuk menyimpan sementara fungsi-fungsi yang dieksekusi ataupun yang sedang diproses.


Komponen CPU

Sebuah CPU khas memiliki sejumlah komponen. Pertama adalah unit aritmatika logika (ALU) yang melakukan aritmatika sederhana dan operasi logis. Kedua adalah unit kontrol (CU) yang mengelola berbagai komponen komputer. Ini membaca dan menafsirkan instruksi dari memori dan mengubahnya menjadi serangkaian sinyal untuk mengaktifkan bagian-bagian lain dari komputer. Unit kontrol menyerukan kepada unit aritmatika logika untuk melakukan perhitungan yang diperlukan. Ketiga adalah cache, yang berfungsi sebagai memori berkecepatan tinggi di mana instruksi dapat disalin ke dan diambil. CPU Awal terdiri dari banyak komponen yang terpisah, namun sejak tahun 1970 mereka telah dibangun sebagai unit terpadu yang disebut mikroprosesor. Dengan demikian, CPU adalah jenis tertentu mikroprosesor. Masing-masing komponen CPU telah menjadi begitu terintegrasi yang Anda bahkan bisa mengenali mereka dari luar.

CPU terletak di motherboard. Motherboard memiliki soket untuk ini, yang spesifik untuk jenis tertentu prosesor. Sebuah CPU akan sangat panas sehingga membutuhkan sistem pendingin sendiri dalam bentuk heatsink dan / atau kipas.
ALU adalah tempat perhitungan terjadi. Bagaimana perhitungan ini benar-benar bisa dilakukan? Untuk komputer, dunia terdiri dari nol (0) dan yang (1). Di dalam prosesor kita dapat menyimpan 0s dan 1s menggunakan transistor. Ini adalah switch mikroskopis yang mengontrol aliran listrik tergantung pada apakah saklar on atau off. Jadi transistor berisi informasi biner: 1 jika arus melewati dan 0 jika arus tidak melewati. Transistor terletak di sepotong silikon yang sangat tipis. Sebuah chip silikon tunggal dapat berisi ribuan transistor. Sebuah CPU tunggal berisi sejumlah besar chip. Gabungan ini hanya mencakup sekitar satu inci persegi atau lebih. Dalam CPU modern, bagaimanapun, bahwa inci persegi dapat menampung beberapa ratus juta transistor – CPU high-end sangat terbaru memiliki lebih dari satu miliar! Penghitungan dilakukan oleh sinyal menyalakan atau mematikan kombinasi yang berbeda dari transistor. Dan lebih banyak transistor berarti perhitungan yang lebih.


CPU Awal yang cukup besar dan tidak mengandung banyak transistor seperti yang mereka lakukan hari ini. Produsen chip seperti Intel dan AMD telah menginvestasikan banyak penelitian untuk membuat segalanya lebih kecil dan muat lebih banyak transistor di dalam prosesor tunggal. Jadi, ketika ada generasi baru dari chip, biasanya berarti mereka telah datang dengan cara yang lebih cerdas yang dikemas dengan kekuatan pemrosesan yang lebih ke CPU tunggal.

- Copyright © 2015 Teknologi Dan Informasi - GijutsuSekai - Powered by Blogger-